• 05月18日 星期六

超音速客机(一):协和式客机

超音速客机

是指能够实现以超过音速飞行的民航飞机,历史至今仅有两种超音速客机曾经批量生产并投入商业营运,分别为英国、法国联合研制的协和飞机,以及苏联的图-144,均在1960年代末出现。但超音速客机自问世以来一直备受成本效益、环境破坏等因素困扰,并未有大规模推广使用。图-144在1978年6月进行最后一次载客飞行后离开商业营运的舞台,而协和飞机在2003年11月26日进行最后一次的商业飞行。随着协和飞机的正式退役,自此世界上再没有提供商业营运的超音速客机。

超音速客机(一):协和式客机

图-144LL

超音速客机(一):协和式客机

协和飞机

超音速客机(一):协和式客机

协和飞机

协和飞机(法语、英语:Concorde)

是一款由法国宇航和英国飞机公司联合研制的中程超音速客机,它和苏联图波列夫设计局的图-144同为世界上少数曾投入商业使用的超音速客机。协和飞机在1969年首飞、1976年投入服务,主要用于执行从伦敦希思罗机场(英国航空)和巴黎戴高乐国际机场(法国航空)往返于纽约肯尼迪国际机场的跨大西洋定期航线。飞机能够在18000米的高空以2.02倍音速巡航,从巴黎飞到纽约只需约3小时20分钟,比普通民航客机节省超过一半时间,所以虽然票价昂贵但仍然深受商务旅客的欢迎。1996年2月7日,协和飞机从伦敦飞抵纽约仅耗时2小时52分钟59秒,创下了航班飞行的最快纪录。
协和飞机共生产了20架,其中仅有16架投入营运。巨大的资金投入和漫长的研发过程使英法两国政府蒙受了不小的经济损失,而且两国政府还不得不拨款资助英航和法航购买协和飞机。2000年,协和飞机发生了其营运生涯的第一次、也是唯一的一次灾难性事故——法国航空4590号班机空难,旅客对其信心大减,之后的911事件又使国际民航业陷入危机。受种种因素影响,英航和法航决定协和飞机执行完2003年10月23日的最后一次商业飞行后终止服务,并于同年11月26日完成“退役”航班后结束其27年的商业飞行生涯。协和飞机代表着航空技术史上的技术进步,因此即使退役后,协和飞机仍然是航空历史上的重要象征,而英法联合研制的经验更为后来欧洲多国共同组建空中客车铺路。

超音速客机(一):协和式客机

英国航空协和飞机(G-BOAC)的电脑绘图。

背景

1950年代开始,随着亚音速喷气式客机的普及,以及第一种实用化的超音速军用飞机——F100“超佩刀”战斗机的出现,超音速客机在当时被普遍视为未来的发展路向,英国、法国、美国都相继计划研发超音速客机。1956年,英国政府成立了超音速运输飞机委员会(Supersonic Transport Aircraft Committee,STAC),联合了英国皇家飞机研究院(Royal Aircraft Establishment,RAE)和布里斯托尔飞机公司(Bristol Aeroplane Company)进行研究,开始探讨开发世界上第一种超音速客机的可行性。到了1959年,委员会得出了初步结论,认为超音速客机在技术上是可行的,并建议研究试制两种超音速客机,分别为1.2马赫的短程客机和2.0马赫的中程客机。 当时英国的布里斯托尔飞机公司获得了英国政府巨额资助,并根据委员会的建议,提出了布里斯托尔198(Bristol 198)计划。布里斯托尔198的设计是一种装备6具涡轮喷气发动机、可载130名乘客并以超音速进行跨大西洋飞行。但由于这种设计理论重量过高,而且装备6具发动机的经济性备受质疑,随后布里斯托尔飞机公司又推出了布里斯托尔198的缩小版本——布里斯托尔223(Bristol 223),设计是一种采用三角翼、装备4具发动机、巡航速度为2马赫、可载客约100人并能够进行跨大西洋飞行的超音速客机。
与此同时,法国也有类似的计划,而且进度与英国相若。法国南方飞机公司(Sud Aviation)和达索公司联合进行研究,提出了超级卡拉维尔(Super-Caravelle)的设计方案,这也是一种采用三角翼、巡航速度为2.2马赫、可载客约70人的中程超音速客机,同样地以戴高乐总统为首的法国政府也大力支持这项计划并提供了资助。

英法合作

在研发过程中,两国的研制团队关系甚为密切,经常交换意见。至1960年代初,这两种设计已经初步进入建造原型机的阶段,但由于投资庞大,英国政府遂要求英国飞机公司在国际间寻找合作伙伴。与数个国家(包括德国和美国)商讨后,只有法国对合作计划有兴趣。英法两国能够就超音速客机计划达成共识并开展合作,主要是因为两国的设计方案十分接近,在速度、航程、气动布局等方面均有极大的相似性,合作研制有助于平均负担费用。另一方面,当时波音707、道格拉斯DC-8迅速占据欧洲民航客机市场的大量份额,法国总统戴高乐不愿意看见欧洲市场被美国飞机制造商垄断,因此也鼓励两国合作,加快研发进度,争取在美国的超音速客机出现之前抢占市场。合作计划并非由两家公司制定,而是由英法政府以国际条约的方式商议。在法国总统戴高乐和英国首相哈罗德·麦克米伦提议下,合作计划草案于1962年11月28日正式签订。这个计划并包括了一项由英方提出的条款,如果任何一方取消合作就必须付出巨额赔偿金(英国财政部曾经两次几乎取消合作计划)。此时,布里斯托尔飞机公司和法国南方飞机公司已经分别与其他公司合并为英国飞机公司和法国宇航公司。
起初,双方有意建造一种长程(6,000公里)和一种短程(4,400公里)的超音速客机,但与潜在客户推销两种机型后,发现航空公司对短程的超音速客机兴趣不大,于是决定取消短程型号[3]。长程型取得超过100架的意向性订单,启始客户包括泛美航空、英国海外航空(BOAC)和法国航空,分别订购6架协和飞机。其他订购航空公司包括巴西泛美航空(Panair do Brasil)、美国大陆航空、日本航空、汉莎航空、美国航空、联合航空、印度航空、加拿大航空、布兰尼夫国际航空、新加坡航空、伊朗航空、希腊奥林匹克航空(Olympic Airways)、澳大利亚航空、中国民航、中东航空和环球航空[3][6]。而按照当时最保守的估计,订单数字将在1975年上升到225架。
在获得足够航空公司的支持后,英法合作的超音速客机研制计划立即展开。按照协议,飞机机体研制将由英国飞机公司和法国宇航公司共同进行,工程分配比例为40%和60%;而飞机的发动机由英国罗尔斯·罗伊斯公司和法国斯纳克玛公司共同进行,工程分配比例分别为60%和40%,飞机总体组装地分别设在英国菲尔顿(Filton)和法国图卢兹。最初的计划是试制两架原型机,研制费用为1.5亿英镑,计划售价为每架约1500万至1700万英镑。首架原型机计划在1966年年底首飞,并预计在1969年取得适航证。至1966年,英法双方决定扩大研制规模,增加生产两架预生产机(Pre-production)(生产编号为101和102),和两架供静力试验和金属疲劳试验用的量产机(生产编号为201和202),研制费用增加至5亿英镑。
1964年,英国工党在大选中胜出,哈罗德·威尔逊出任英国首相,面对当时的财政赤字,英国政府有意撤资、退出合作计划,为此法国总统曾亲自出面,强调英国需要履行1962年签定的一纸协议,以及明白单方面拒绝执行协议的后果。碍于条款,英国被迫继续投资,于是接连取消多个飞机研制项目,包括AW.681短距起降运输机(Armstrong Whitworth AW.681)、P.1154超音速垂直/短距起降战斗机(Hawker Siddeley P.1154)、TSR-2战术打击侦察机等。

命名

在1963年1月13日,当时的法国总统戴高乐率先将这一超音速客机研制计划,以法语命名为“Concorde”(“Concorde”在法语中代表合作、和谐),而英国为了向法国表示对合作的诚意,亦同意采用法语名称,但后来法国否决英国加入欧洲经济共同体,时任英国首相麦美伦改变了主意,认为法国总统戴高乐在飞机的命名上忽视英国,决定将“Concorde”改名为英文“Concord”(“Concord”在英语中亦是和谐、协调的意思)[3]。直到1967年12月11日首架协和飞机在法国图卢兹出厂,飞机命名才尘埃落定,同日英国科技部部长东尼·宾特(Tony Benn)宣布英方愿意使用最初的名称,称协和飞机为“Concorde”。但这也引起了英国国内的争议,一些英国人认为协和飞机合作计划是英国先向法国提出的,理应采用英文名称。为了消除疑虑,宾特随即解释了尾词“e”的意思。他认为“e”可以代表卓越(Excellence)、英格兰(England)、欧洲(Europe)和挚诚协定(Entente Cordiale)。在其回忆录中,宾特忆述他当时收到一封由一位苏格兰人所寄来的信,信中写道:“你说‘e’是代表英格兰,但协和飞机有些部分是苏格兰制造的!”。事实上协和飞机的机鼻确实是在苏格兰生产组装,宾特在回信中打趣的表示:“‘e’也可以代表‘Ecosse’(法语中苏格兰的名称),但也可以代表挥霍(extravagance)和不断增加(escalation)!”

技术特点超音速客机(一):协和式客机

超音速客机(一):协和式客机

协和飞机采用了弧形前缘细长三角翼,机身为细长型,主要材质为铝合金,装备4具带加力燃烧室的罗尔斯·罗伊斯奥林匹斯593型涡轮喷气发动机,单具推力超过38,000磅。在高效率的发动机推进下,协和飞机的巡航速度可长时间保持在2.02马赫(每小时2,140公里或1,330英里),最高巡航高度达18,300米(60,000英尺)。协和飞机也是首种使用模拟电传操纵的民航客机,亦是首度以半导体器件和被动元件形成混合集成电路(Hybrid integrated circuit)作为飞机电子系统主体。操作方面,协和飞机需要三名机员共同负责,包括正、副飞行员及飞行机械工程师。飞机的总设计师为皮埃尔‧萨特(Pierre Satre),副设计师为阿奇保‧路雪(Archibald Russell)。

首创技术

协和飞机最初的设计主导思想,是立足于1950年代的航空技术水平,避免采用过多未成熟的新技术。但后来在研制过程中发现,超音速客机在空气动力学、飞行控制系统、发动机等方面的技术难度都超过了预期,过分依靠既有技术难以达到预定的性能指标,所以协和飞机的发展过程中也研究、应用了许多新技术,代表了1960年代欧洲航空技术的最高水平,对以后的民航客机发展具有重要影响,但协和飞机的研制时间也因此大大延长。

  1. 高速飞行和飞行性能改善:
    S型前缘双三角翼
    电脑控制的可变发动机进气坡度
    超音速巡航能力
    电传操纵发动机,是今天全权限数字电子控制(Full Authority Digital Electronic Control)发动的先驱
    可下垂式机鼻,以增加着陆时驾驶舱的向下视野
  2. 减重和提升性能:
    2.04马赫的巡航速度能带来最经济的燃油消耗(涡轮喷气发动机于高速时能获得较高的效率,而且以2倍马赫速度巡航能面对最低的激波阻力)
    机体主要材质为铝合金以减轻重量,并以传统的方式建造以避免未知因素带来的风险
    全权自动驾驶(autopilot)和自动节流阀(autothrottle),容许飞行员于爬升至着陆期间完全不介入飞行操纵
    全电子类比电传操纵飞行控制系统
    多功能的飞行操纵界面(control surfaces)
    部件更轻但压力高达28Mpa的高压液压系统
    传输各项空气动力学数据(包括总压力、静压力、迎角、侧滑等)的数据通道,传感器分布于机身多个位置
    全电子控制类比电传制动(brake-by-wire)系统
    采用俯仰配平(Pitch trim)、燃油可以在各油箱内转移以控制飞机重心和升力中心的相对位置
    部分部件以雕刻铣削方式从一整块合金坯料制造成形,以减少零部件数量,同时减轻重量并提高部件强度

细长三角翼超音速客机(一):协和式客机

协和飞机的S型前缘细长三角翼

协和飞机的S型前缘细长三角翼的出现,有功于1950年代至1960年代期间超音速空气动力学、旋涡动力学的蓬勃发展,许多理论上的预言已经得到了风洞试验的证实。第二次世界大战后,后掠翼得到了广泛的应用,超音速飞行也成为可能。1950年代初,英国皇家飞机研究院(Royal Aircraft Establishment,RAE)空气动力学部成立了一个研究小组,开始了对超音速客机的初步研究和设计工作。起初研究小组提出过采用后掠翼的方案,但发现这样虽能提高飞行速度,但也产生了一些问题,最主要是降低了飞机的升阻比,起飞着陆距离长。为了改善飞机的低速性能,研究小组甚至讨论过采用可变后掠翼的可行性,但依然存在结构复杂、配平困难等问题。但非常幸运的是,一大批优秀的空气动力学家,例如迪特里希·屈西曼(Dietrich Küchemann)、约翰娜·韦伯(Johanna Weber)、史密斯(J. H. B. Smith)、马斯克尔(E. C. Maskell),当时云集超音速运输飞机委员会(STAC),为协和飞机的细长三角翼作出重要贡献。
这些空气动力学家的研究发现,气流从涡流发生器(例如细长机翼)前缘通过会分离出稳定的漩涡(脱体涡,trapped vortex),高速旋转的气流提高了机翼表面的负压,漩涡强度随迎角增大而增大,产生很大的涡升力(Vortex lift),并在升力线斜率上表现出明显的非线性。这种非线性升力在低速或大迎角状态下更明显,所产生的升力更大。1950年代起,跨声速风洞、超声速风洞成为试验超音速飞机气动性能的最佳途径。在试验中,三角翼的优势越来越明显。在超音速飞行中,三角翼气动阻力小,而机鼻形成的冲击波到达三角翼的大后掠前缘时,会使三角翼产生非常高的气动效率。另一方面,在大迎角飞行时,三角翼的前沿还能产生大量涡流,附着在上翼面,产生的涡升力能大大提高总体升力。一批三角翼试验机,如亨德里·佩奇公司的HP.115、费尔雷公司的Delta 1、Delta 2,也验证了这项特性。然而,普通无尾三角翼的设计也拥有了后掠翼的部分缺点,由于超声速三角翼飞机展弦比较小,低速飞行时的升阻比低,气动特性不理想,起飞着陆距离长。因此,协和飞机采用了双三角翼的设计。双三角翼的内外侧两个后掠角,靠近机身的翼根位置有较大的后掠角,以降低阻力;而在主要产生升力的机翼外段采用较小的后掠角和较小的机翼弦长,机翼前沿不是直线而是S型的曲线。细长S型前缘三角翼提高了低速时的升阻比,涡流稳定性好,平衡了高速和低速时的要求,对低速起降时的操纵性有所改善。协和飞机的细长三角翼由于有效利用了脱体涡升力,满足了飞机在低速、大迎角的情况下所需要的升力。此外,S型前缘三角翼的空气动力中心位于飞机重心之后,最大限度地减少升力中心随速度的移动;从亚音速过渡到超音速飞行时,机翼压力中心位置变化较小,提高了飞机的稳定性。

超音速客机(一):协和式客机

在适当的大气环境下,协和飞机大迎角起飞、降落时可以看见机翼上方的脱体涡流

配平油箱

当任何飞机在飞越临界马赫数时,压力中心(Centre of pressure)会向后转移。在飞机重心不变的情况下会为飞机带来一股下俯力矩。即使工程师为协和飞机设计了S型前缘的三角翼,压力中心仍然会后移约2米。虽然可以利用气动翼面作配平控制(trim controls)来抵销,但在如此高速的情况下会大幅增加飞机的阻力。因此,协和飞机会特别利用燃油做前后配平,通过将燃油在机内三个辅助调整油箱(4个位于机身与机翼前缘交会处,一个位于机尾)之间转移,以电脑自动控制重心来达到配平,成为一种有效的辅助配平控制。

超音速客机(一):协和式客机

配平油箱原理

发动机

为了令协和飞机在经济上可行,它需要飞行一段颇长的距离,这需要一种高效率的发动机。为了适应超音速飞行的需要,因此迎风面积较小的涡轮喷气发动机是最佳选择,以减少阻力及产生达超音速的排气速度,而油耗较低和噪声较少的涡轮风扇发动机则不适合用于超音速客机。每架协和飞机装配了四具由罗尔斯·罗伊斯和斯奈克玛公司联合研制的奥林匹斯593 Mk 610型轴流式双转子(twin spool)涡轮喷气发动机,是当时世界上推力最大涡喷发动机,每具可产生多达18.7吨的推力。

超音速客机(一):协和式客机

奥林匹斯593型涡轮喷气发动机

超音速客机(一):协和式客机

进气道斜板和溢流门,标示有“Danger”(危险)警告的部件

超音速客机(一):协和式客机

协和飞机的发动机喷管及反推力装置

表面加热

协和飞机在五万余呎高空飞行,机外环境温度约为零下50℃,飞机在超音速飞行时,空气压力和摩擦力会使飞机表面加热,而且飞机不同部分的升温情况也有所差异,并且会在机身表面形成温差。超音速飞机最热的部分除了发动机之外就是机头头锥,协和飞机在飞行时头锥最高温度可达127℃机身后段也可超过90℃。协和飞机主体材质为硬铝(AU2GN/ASTM 2618飞行器专用铝材[51]),仅在部分需要长时间承受高温的特殊部位,例如升降副翼、发动机短舱等处使用钛合金和不锈钢。铝材在当时已经在飞机制造工业广泛使用,应用经验较多,而且价格低廉、建构容易。硬铝结构稳定,可持续承受达127℃的高温,因此协和飞机的最高速度被限制在2.02马赫,而这个速度是硬铝的高温极限假如目标速度超过2.02马赫,机体则需要大范围的使用钛合金或不锈钢,大大增加制造成本和飞机重量。

超音速客机(一):协和式客机

协和飞机以2倍音速飞行时的表面加热情况

结构强度

协和飞机高速飞行时,转向会为飞机结构带来巨大压力,导致结构扭曲变形。为了在超音速飞行时依然能够维持有效、精确的控制,解决办法是对机翼内侧和外侧的升降副翼,依照不同的速度状态,进行按比例的调整。超音速飞行时,相对软弱的机翼外段的副翼控制面将会锁定在水平位置,而只会操作靠近翼根位置、相对强度较高的内侧副翼控制面[,对于气动操作的精密要求很高。
另一方面,细长的机身意味着较低的结构强度。实际上协和飞机飞行时机身会出现少许弯曲,尤其在起飞时这个现象更为明显。这个时候当飞行员在机头回望客舱,就能显著的看到这个情况,但由于机舱中段设置了厕所,阻隔旅客的视线,所以大多数旅客并未能察觉到机身的变化。而高速飞行下因为加热的缘故,机身也会拉长约数十公分,因此必须在多处地方使用伸缩缝设计。

超音速客机(一):协和式客机

协和飞机的发动机位于机翼下侧中部,两边各有一片副翼

法航协和飞机空难超音速客机(一):协和式客机

2000年7月25日,一架法国航空公司的协和飞机(登记编号F-BTSC)在执行4590号班机时坠毁于法国戈内斯(Gonesse),机上100名乘客、9名机组人员和地面4名民众全数丧生,这也是协和飞机营运生涯中唯一一次的致命事故。
根据法国民航安全调查分析局(Bureau d'Enquêtes et d'Analyses)的官方调查报告,这场事故是由于协和飞机滑跑起飞时,左主起落架的机轮辗过了一条在几分钟前由一架美国大陆航空DC-10客机上掉落的钛金属条,这块金属条刺穿了协和飞机轮胎,一块重达4.5公斤的轮胎橡胶碎片以每小时300公里的高速击中了机翼下侧,导致内部油箱破裂,大量航空燃油泄漏;而轮胎碎片也破坏了起落架附近的电线线路,产生的火花点燃了燃油并在左侧机翼发动机短舱处引发大火。面对火警警报,飞行员立即关闭2号发动机,但1号发动机仍然尝试运作并提供少许推力。但此时飞机已经达到起飞速度,无法紧急制动,飞机只能强行起飞。由于飞机失去了部分推力,无法获得更高的高度和速度,因此飞行员尝试转场至附近机场降落的方案最终失败,造成飞机失速,高度急降时机头迅速拉高,随后飞机向左侧翻滚,并在轮胎损坏后不到1分30秒的时间内坠毁在戈内斯的一家旅馆(Hotelissimo Hotel)。
而在这次事故之前,协和飞机被誉为世界上最安全的民航客机,每公里飞行里程的旅客丧生数目为零。但在这次事故发生后,协和飞机又变成世界上“危险”的民航客机,每一百万次航班的丧生旅客数为12.5人,比安全纪录第二差的客机还要高三倍。法航随即停飞所有协和飞机,适航证分别被法国、英国航空局收回。针对这次事故,英航和法航对协和飞机进行了多项安全改进措施,包括改用米其林特制的防刺穿轮胎、铺设防弹复合材料凯夫拉(Kevlar)以保护油箱、改善电气控制系统安全等。与此同时,英航也对机舱进行了翻新,更换了座椅、厕所、地毯、照明系统等。
进行安全改进工程后的协和飞机在2001年7月17日首飞,由英国航空首席协和飞机飞行员麦克·班尼斯特(Mike Bannister)执行。飞机自伦敦希思罗机场起飞,在大西洋和冰岛附近飞行了3小时20分,并在返回英国布莱兹诺顿空军基地前达到了2.02马赫的最高速度。这次成功的试飞受到了当时广泛关注,除了电视直播其过程外,也有大量民众来到机场以亲身观看协和飞机。2001年9月5日,英国航空公司和法国航空公司重新获得协和飞机的适航证书。

修复计划

虽然协和式客机早已于2003年退役,但英法两国的有关人士希望它仍能作为一项标志性遗产再次飞翔,并成为2012年伦敦奥运会开幕式表演的一项内容。来自英法两国的几个组织筹资1,500万英镑,试图让协和式客机重返蓝天。从2010年2月开始,一组由法国宇航和英国飞机公司的工程师团队试图修复一架目前存放在法国航空航天博物馆的协和式客机(生产编号213,注册编号F-BTSD)的发动机,并令它能够使用发动机在地面滑行。2010年5月29日起,他们开始对飞机进行检查,首先将测试客机的罗尔斯·罗伊斯发动机是否仍能安全启动,以及这架协和式客机是否能在跑道上滑行。然而,这项计划最终未能实现。

意外事故

  • 协和飞机的轮胎一直是其弱点之一,历史上曾多次在跑道滑行途中因异物导致爆胎事故。最早的一次记录是在1975年6月20日,一架法国航空的协和飞机在委内瑞拉加拉加斯机场准备起飞时,一个机轮被跑道上的指示灯损坏。而之后协和飞机爆胎事故几乎每年都会发生。
  • 1977年11月28日,法国航空一架协和飞机(F-BVFD)在达卡尔机场降落时重着陆。当时飞机以每秒14英尺(4.62米)的下降率着陆,而实际安全标准为最高每秒10英尺(约3米),导致着陆时主起落架严重损毁,发动机被拖行数百英尺(每英尺30.48米)。这架飞机在1982年5月27日法航结束巴黎—达卡尔—里约热内卢的航线后退役封存,1994年拆解。
  • 1979年6月14日,法国航空一架协和飞机(F-BVFC)执行54号班机,由华盛顿杜勒斯国际机场起飞时,主起落架其中2个轮胎爆胎,轮胎碎片击穿机翼,机翼上出现一个大洞,二号发动机、部分液压系统和电缆受损,同时引致大量燃油泄漏。事故发生后法国航空部门要求改进协和飞机的机翼设计,当时就提出用防弹物料保护油箱,但并没有落实执行。这次事故发生一个月后,1979年7月21日,法国航空另一架协和飞机(F-BVFD)在杜勒斯国际机场再次爆胎。
    1992年3月21日,英国航空公司一架由伦敦飞往纽约的协和飞机(G-BOAB),在途经美国纽约东北海面17000米上空以2.0马赫巡航飞行时,方向舵上段大部分脱落,导致飞机剧烈震动及操控困难,飞行员尝试关闭一台发动机减轻震动并最终成功降落肯尼迪国际机场,意外中没有乘客受伤。调查发现意外可能是由于维修时的失当,维修时使用的辅料渗入方向舵部件的蜂窝状结构,导致金属结构强度减低。事故后,英航加强对协和飞机方向舵的人工和超声波检查
  • 1998年10月8日,英国航空公司一架的协和飞机(G-BOAC),执行由伦敦飞往纽约的BA001号班机,在途经加拿大纽芬兰海岸时,方向舵下段一部分脱落。
  • 2000年7月7日,英国航空公司表示,在旗下6架协和飞机的机尾发现约6厘米至7厘米的“极微小”裂痕,而另一架的机翼出现裂痕更需要停飞检查,但英航表示这“对安全不构成威胁”。
  • 2000年7月25日,法国航空4590号班机空难。法国航空一架协和飞机(F-BTSC)由巴黎戴高乐机场滑行起飞时,被跑道上的一块由一架美国大陆航空DC-10客机脱落的金属薄片割破轮胎,轮胎碎片继而撞击油箱,造成协和式飞机油箱破裂大量漏油起火失事。事件造成机上109人全部遇难,及地面4人死亡。

环境冲击

科学研究证实,协和飞机在平流层飞行时会产生大量含有氮氧化物的废气,这些废气在高空产生化学反应并会一定程度上破坏臭氧层;而其他在较低高度的对流层飞行的民航机反而会在飞行时制造出臭氧,但平流层和对流层之间的垂直气流交换是十分困难的,因此这对在平流层中被破坏的臭氧层并无补救作用。然而,由于超音速客机的数量很少,所以协和飞机对臭氧层的破坏在整个大气环境中实际上是十分轻微的。

超音速客机(一):协和式客机

协和飞机起飞时需要使用加力燃烧室,并产生大量灰黑色的废气

协和飞机的燃油消耗也是十分巨大的。

大众形象

  1. 由于高昂的票价却可换来节省超过一半的时间,协和飞机更能吸引对票价不敏感却更在乎时间的政府高官、企业高层和影视艺人乐于搭乘。因此乘坐协和飞机通常被大众视为一种身份象征,但一些特殊安排的包机服务令一些游客也有机会体验协和飞机
  2. 作为国家的象征之一,英航的协和飞机机队经常会在举行重要的皇室活动、主要航空展时进行表演,亦会有机会与红箭飞行表演队同场演出。

超音速客机(一):协和式客机

2002年,协和飞机在伊丽莎白女王登基50周年庆典上和英国红箭飞行表演队编队飞行

超音速客机(一):协和式客机

进行皇室外访的英女皇伊丽莎白二世和菲利普亲王步下协和飞机

纪录

协和飞机最快的跨大西洋飞行纪录由英航的G-BOAD在1996年2月7日创造,飞机由纽约肯尼迪国际机场起飞到伦敦希思罗机场降落,仅仅用了2小时52分59秒。除此之外,协和飞机也刷新了国际航空联合会(Fédération Aéronautique Internationale)的“西向环球飞行”和“东向环球飞行”速度纪录。1992年10月12日至13日,为纪念哥伦布发现美洲新大陆500周年,一个名为“协和精神之旅”(Concorde Spirit Tours)的美国组织包下了法国航空一家注册编号为F-BTSD的协和飞机,由葡萄牙里斯本出发,先后在多米尼加的圣多明各、墨西哥的阿卡普尔科、夏威夷的火奴鲁鲁、关岛、曼谷和巴林落地加油,最后以32小时49分3秒的时间,创造了西向环球飞行的速度记录。

上一篇新闻

LAM展览 | 德国艺术家迪特•努尔与中国艺术家曾杨双个展将于麓山美术馆开幕

下一篇新闻

阿里、腾讯、京东、小米、滴滴在亚洲的Fintech布局

评论

订阅每日新闻

订阅每日新闻以免错过最新最热门的新加坡新闻。